
Department of Computer Science

MEng Computer Science/Software Engineering

Bluetooth Database Bridge

James Harvey

Supervised by Dr. Behzad Bordbar

April 2005

http://www.dblue.co.uk/
http://dblue.sourceforge.net/

Abstract

This report is concerned with the design and implementation of a J2ME API library and desktop
server daemon allowing development of database-driven mobile computing applications over
Bluetooth. It proposes a solution to the problem based on distributed system theory and dis-
cusses a proprietary Bluetooth messaging protocol.
The target audience includes developers and database/network administrators.

Keywords: Mobile, Bluetooth, Database, API, Java

iii

Acknowledgements

First and foremost, thank you to my project supervisor Dr.Behzad Bordbar for his enthusiasm and
friendship throughout the project. His guidance and advice has been invaluable to making it a
success. I would also like to thank my family and friends for their care and continual support.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Background Research 3
2.1 Bluetooth . 3

2.1.1 Network Topology . 3
2.1.2 Specification Architecture . 4
2.1.3 Security . 5

2.2 Java Micro Edition (J2ME) . 6
2.2.1 Configurations . 7
2.2.2 Profiles . 8
2.2.3 Optional Packages . 8

2.3 Bluetooth and Java . 8
2.3.1 J2ME Bluetooth . 9
2.3.2 J2SE Bluetooth . 9

2.4 Java Database Connectivity . 9
2.5 Distributed Systems . 10

2.5.1 Message Passing . 10
2.5.2 System Architecture . 10
2.5.3 Java Remote Method Invocation . 10

3 Analysis and Specification 11
3.1 Problem Analysis . 11
3.2 User & Non-Functional Requirements Definition . 12

4 Design 13
4.1 System Design . 13
4.2 Module Identification . 14

4.2.1 Client Component Modules . 14
4.2.2 Server Component Modules . 14
4.2.3 Module Interaction . 15

4.3 Client Component Module Design . 15
4.3.1 API Module . 15
4.3.2 RMI Module . 17
4.3.3 Communication Module . 23

4.4 Server Component Module Design . 23
4.4.1 Communication Module . 23
4.4.2 RMI Stack . 25

v

Contents vi

4.4.3 SQL Module . 26

5 Implementation 28
5.1 Overview . 28

5.1.1 Package Structure . 28
5.2 Client Component . 29

5.2.1 API Module . 29
5.2.2 RMI Module . 31
5.2.3 Communication Module . 33

5.3 Server Component . 34
5.3.1 SQL Module . 34
5.3.2 RMI Module . 35
5.3.3 Communication Module . 35

6 Testing 36
6.1 Introduction . 36
6.2 Testing Strategy . 36

7 Project Management 38
7.1 Time Planning . 38
7.2 Project Lifecycle . 38
7.3 Risk Identification and Management . 39

8 Appraisal 40
8.1 Assessment . 40
8.2 Performance and Stability . 41

9 Evaluation 42
9.1 Achievements Overview . 42
9.2 Extensions . 42

9.2.1 Further Testing . 42
9.2.2 Wireless Bridge . 42
9.2.3 Logging . 43
9.2.4 Message Exchange Protocol Optimisation . 43
9.2.5 Security . 43
9.2.6 Non-Java Implementation . 43

Bibliography 44

Appendix 46

A Project Proposal 46
A.1 Introduction . 46
A.2 Project Overview . 46

B Source Code Listing 48

C Guide For Running The Software 50
C.1 Client Software . 50

C.1.1 Pre-requisites . 50
C.1.2 Starting the software . 50

C.2 Server Daemon . 50
C.2.1 Pre-requisites . 50

Contents vii

C.2.2 Starting the daemon . 51

List of Figures

2.1 Example of a 3 slave piconet . 4
2.2 The Bluetooth Protocol Stack . 6
2.3 J2ME Framework . 7

4.1 High-level System Architecture . 13
4.2 Client-Server Component Interactions . 15
4.3 Client component API module architecture . 16
4.4 A Simple Successful Message Exchange . 18
4.5 A Non-Responsive Message Exchange . 19
4.6 A Simple Corrupt Exchange . 20
4.7 A Disordered Message Exchange . 22
4.8 Client/Server component RMI stack architecture . 22
4.9 Client component Communication module architecture 23
4.10 Server component Communication module architecture 24
4.11 Server component RMI module isolation . 25
4.12 Server component SQL module architecture . 26
4.13 Server component SQL module classes . 27

5.1 Project package structure . 29
5.2 Code sample of MethodTag class . 30
5.3 Code sample of DatabaseObject method for data presentation 31
5.4 Code sample of ResultSet instantiation . 31
5.5 Third-party code example . 32
5.6 Blocking Control class code . 32
5.7 Example XML message to create a server side ResultSet object 32
5.8 Code sample of regular expression function . 33
5.9 Code sample of reading Bluetooth data . 34

6.1 Graph of load testing performance . 37

7.1 Gaant chart of early time-scheduling . 38

viii

List of Tables

2.1 Bluetooth Specification Protocols . 5
2.2 Bluetooth Specification Profiles . 5
2.3 J2SE Bluetooth (JSR-82) Implementations . 9

4.1 Message Exchange Protocol Tag Definition . 21

ix

Chapter 1

Introduction

Mobile computing devices have become a ubiquitous part of modern living, maturing substan-
tially from their inception to become the fast and powerful platforms available today. Users no
longer expect basic device functionality and increasingly look to them as convergence machines
serving multiple purposes. For example, mobile phones have diversified their functionality by
becoming mobile media centres enabling playback of audio and video files “on-the-move”. This
desire for enhanced functionality leads to increasingly advanced software to address these needs.
Recognising the potential of the market, Sun Microsystems released a mobile version of their
popular Java platform, J2ME. It has achieved mass-market adoption with over 267 million Java-
enabled devices worldwide [29], supported by software written by thousands of developers.

At the heart of all software, mobile or otherwise, is information. Desktop applications are often
database-driven, obtaining the information required by the user from a third-party data source.
Mobile applications are unable to adopt this paradigm as they are often resource constrained and
simply do not have the memory capacity to store all the information that could possibly be re-
quested by the user.

The project aims to solve this problem by allow developers to produce database-driven mobile
applications using wireless technology. Bluetooth is a wireless communication standard [27] that
is found in millions of diverse mobile devices and enables data to be transmitted over a short
range. Mobile applications will use Bluetooth to communicate with legacy databases residing on
a database server. This will be achieved by creating a J2ME database library and an application
to be installed on the database server enabling Bluetooth access, thus bridging the mobile device
with the database.

Applications of this project are restricted only by the developers imagination. For example, a
restaurant could distribute Bluetooth-enabled PDAs to its waiters which automatically check the
database for the menu listing. If someone wishes to know the soup-of-the-day, the PDA automat-
ically queries the database to find out what it is. Similarly, waiters can submit orders to a database
accessible by chefs without having to return to the kitchen, improving productivity and reducing
risk of lost orders. Another example could be an electronic message board whereby users submit-
ting messages to a database. Once a mobile device is in Bluetooth range of the server, the software
queries the database for any unread messages for that particular user.

The report assumes the reader is a competent computer scientist and has knowledge of soft-
ware engineering and object-oriented programming principles. Background research material is
outlined and explained, leading to an analysis of the system and derivation of a requirements def-
inition. The design chapter outlines the decision making process and structure of the software,

1

Chapter 1. Introduction 2

followed by a number of technical implementation details. Testing of the software and project
management approach are also analysed. Finally, an evaluation of the final product is made and
conclusions drawn. The appendices contain information referred to within the report and rele-
vant supplementary documents.

Chapter 2

Background Research

2.1 Bluetooth

Bluetooth is an open specification for a short range, low-power radio technology designed to al-
low devices such as personal digital assistants (PDAs) and mobile phones to communicate in a
wireless, ad-hoc fashion. [27]

Ericsson Mobile Communications commissioned a study in 1994 to investigate the feasibility of a
cable-replacement solution for connecting it’s phones to accessories. In 1998, the Bluetooth Spe-
cial Interest Group (SIG) was formed1 to take the proprietary wireless-technology developed by
Ericsson and develop it as an open specification. [30]
The first specification version (1.0) was published in 1999. At the time of writing, the specification
has matured to a fourth-generation version (1.2), with a fifth-generation (2.0) drafted. [18]

2.1.1 Network Topology

Bluetooth is a technology designed for ad-hoc networking (see 2.1). Such networks are limited by
a device’s radio power class and typically extend approximately 10 metres from the device. [27]
Networks of this nature are known as Personal Area Networks (PAN). A PAN is a network formed
when two or more devices are connected in local space.
The PAN topology is also referred to in the literature as a piconet. This topology type is very
similar to a conventional client-server architecture [4] and is illustrated (see Figure 2.1) by a simple
example.

• A Bluetooth device registers itself as either a master or a slave

• If the device is a master, it must register zero or more services that is is making available to
slaves

• If the device is a slave, it will search for all available local devices to find a master with the
service is requires

• Once a slave finds a master, it will query the master for all available services

– If the query finds the required a service, it will attempt to connect to that service

• Once connected, data is exchanged

1Initially founded by Ericsson, Intel, IBM, Nokia and Toshiba, it currently has hundreds of members

3

2.1. Bluetooth 4

Master

Service 1

Service 1

Service N

Piconet 1

Slave 2

Slave 3

Slave 1

Figure 2.1: Example of a 3 slave piconet

• Each piconet consists of a single master with up to seven slaves

2.1.2 Specification Architecture

The Bluetooth specification describes the functionality of a compliant device in terms of a proto-
col stack (see Figure 2.2) similar to that of the Open Systems Interconnection (OSI) model. [4]
The Host Controller Interface (HCI) separates and provides communication between the host’s soft-
ware and the host’s physical hardware. Application developers do not need to be concerned with
the details of any hardware implementation. The protocol stack provides a number of strictly
defined interfaces for developers to use. The highlighted boxes (see Figure 2.2) [18] [16] represent
the protocols addressed by the Java API for Bluetooth wireless technology (JABWT) (see 2.3). An
overview of these protocols is shown in Table 2.1. [18] [13] [27]

Protocol Description
Object Exchange (OBEX) Adopted protocol defined by the Infrared Data Association

(IrDA). Allows an application to describe the structure of data
using headers as well as its content.

Radio Frequency COM
(RFCOMM)

Provides emulation of an RS-232 serial port. Allows applications
to communicate as though devices are physically connected via
a COM port.

Service Discovery Proto-
col (SDP)

Defines a standard method for the discovery and query of ser-
vices (see 2.1.1) being made available by other local devices.

2.1. Bluetooth 5

Logical Link Control
and Adaption Protocol
(L2CAP)

Shields higher layer protocols from lower level data presentation
details. It is responsible for segmenting data into packets before
passing to the HCI layer, as well as reconstruction of segmented
incoming packets. This layer also provides functionality to syn-
chronise grade of service level between connected devices. De-
tails of this are beyond the scope of this paper. All data must pass
through this core layer of the stack.

Table 2.1: Bluetooth Specification Protocols

In addition to the protocol groups (see Table 2.1), the Bluetooth specification also defines a num-
ber of profiles. A profile defines the protocols and features of the specification that can be used for
a particular usage scenario. There are 16 profiles, each being a member of one of three major
groups. An overview of these major groups is shown in Table 2.2. [27]

Profile Group Description
Generic Access Profile
(GAP)

Provides a number of generic functions that allow connections
between two devices. Such functions include device discovery,
link management and functionality for security. All other profiles
are based upon GAP.

Serial Port Profile (SPP) Allows devices to communicate as though connected by a serial
port. This profile directly interacts with the RFCOMM protocol
layer (see Table 2.1)

Generic Object Exchange
Profile (GOEP)

Defines a number of set usage cases for applications requir-
ing OBEX communication (see Table 2.1). These profiles define
unique headers to describe data for each particular case.

Table 2.2: Bluetooth Specification Profiles

The interested reader should refer to Bluetooth Revealed [27] or the Bluetooth Specification
[30] for further hardware, middleware and profile details.

2.1.3 Security

The Bluetooth Specification defines a security model based upon three components; authentication,
authorisation and encryption. All aspects of security are managed by the Bluetooth Control Centre
(BCC) and are not accessible by developers.

Bonding and Pairing

Bonding is the procedure in which one device authenticates itself to another by using a shared
authentication key. If no key exists between two devices, one is generated based on a shared secret
PIN. The PIN is usually exchanged verbally between users wishing to bond their devices. Once
an authentication key has been generated, each device stores it for future use to allow devices to
bond in the future without repeating the pairing process.

Encryption

Once devices are bonded, either of the pair may request the communications channel to be en-
crypted. The pair negotiate an encryption key, attempting to use the largest possible length sup-
ported by both devices. International encryption export restrictions limit this key to between
8-128 bits, a length that can theoretically be broken.

2.2. Java Micro Edition (J2ME) 6

 OBEX

 RFCOMM BNEP

 IP

 TCP/UDP

 SDP TCS Binary

 L2CAP

 LMP

 Audio

 Baseband and Link Control

 Bluetooth Radio

HCI

Figure 2.2: The Bluetooth Protocol Stack

Authorisation

Authorisation is the process of a master device permitting a slave to utilise a particular service.
Access to the service may be granted on a temporary or permanent basis.

Security Modes

There are three security modes define in GAP (see Table 2.2).

• No Security

– Communication is not encrypted, devices are not authenticated and service access is per-
manently granted. The most insecure mode.

• Service Level Security

– Individual services determine the required level of security. This can be set by develop-
ers during service registration.

• Link Level Security

– Any use of Bluetooth link must be secured using all three security model components
before transmission will occur.

2.2 Java Micro Edition (J2ME)

Java Micro Edition (J2ME) is a highly optimised, light-weight Java runtime environment designed
specifically for resource constrained devices such as mobile phones, PDAs, set-top boxes and
other consumer goods. [29] [13] [18]

2.2. Java Micro Edition (J2ME) 7

Host Operating System

Configuration

Profile(s)

Optional Packages(s)

Libraries

Virtual Machine

Figure 2.3: J2ME Framework

J2ME has achieved mass market adoption with over 267 million Java enabled handsets world-
wide, with estimates placing this figure at 1.5 billion by 2007. [29] The platform is increasingly
stable and has matured significantly as part of the Java Community Process (JCP) over the past five
years.

Similar to its desktop and enterprise counterparts, J2ME defines a language and virtual machine
(VM) specification. The functionality of this machine is implemented by a device’s original equip-
ment manufacturer (OEM) who must implement the VM specification to interact with their under-
lying operating system.

2.2.1 Configurations

To ensure performance, the all-encompassing base J2ME environment is optimised for sets of de-
vices by the use of configurations. A configuration [16] defines the minimum functionality required
by a VM and associated class libraries. Devices that share similar characteristics, such as available
memory and processor speed, are grouped into configuration sets.
Currently there are two J2ME configurations; Connected Limited Device Configuration (CLDC) and
Connected Device Configuration (CDC).

Connected Limited Device Configuration

The CLDC (JSR-30) defines a much-reduced subset of the J2SE class library. It also defines the
specification of a kilobyte virtual machine (KVM). Devices that use the CLDC are those with limited
memory, intermittent network connections, slow processors and require a VM with a minimal
resource footprint. [32] Examples include mobile phones, low-end PDAs, pagers and other mobile
devices.

Connected Device Configuration

The CDC (JSR-36) is an enhanced version of the base CLDC. It defines a larger subset of the J2SE
class library, as well as a full Java virtual machine (JVM). CDC enabled devices have more avail-
able memory, greater network bandwidth, faster processors and are less resource constrained.
Examples include set-top boxes and high end PDAs.

2.3. Bluetooth and Java 8

2.2.2 Profiles

In addition to configurations (see 2.2.1), the J2ME environment is further customised by profiles1. A
profile defines a set of APIs used by a narrower category of device within a configuration, creating
an environment targeted for a more specific device type. [18] For example, profile APIs may give
the programmer a set of classes for GUI forms tailored to a specific device screen such as a mobile
phone. Currently there are three profiles; Mobile Information Device Profile (MIDP), Foundation
Profile (FP) and Personal Profile (PP).

• Mobile Information Device Profile

– This profile is designed for mobile phones and pagers and is most often used with
CLDC. It provides user interface (UI), network and storage classes.

• Foundation Profile

– This is the base profile for CDC, and is designed for embedded devices without a UI.
It cannot be used by CLDC devices.

• Personal Profile

– Built on Foundation Profile, this profile is for high-end PDAs and game consoles. It
provides all UI, network and storage classes required by CDC devices. There is also a
subset of Personal Profile, Personal Basic Profile (PBP) which is targeted at CDC devices
with limited graphical abilities.

2.2.3 Optional Packages

The final part of the J2ME framework are optional packages. These define features that can be in-
cluded to give enhanced functionality to the environment. If an optional package is included, the
OEM must implement whatever functionality that package provides with their hardware/operating
system. An ever increasing number of packages are available to OEMs, however, the one of most
relevance is the Java API for Bluetooth wireless technology (JABWT), JSR-82. (see 2.3).

2.3 Bluetooth and Java

The Java programming environment is a ”write-once-run-anywhere” language designed to be
platform and hardware independent. However, the Bluetooth specification (see 2.1.2) only out-
lines what protocols and functionality a compliant device should implement, not the interfaces
they should provide. This makes it impossible for code using Bluetooth functionality to be
portable as OEMs may implement functionality differently.
To solve this, the Java Community Process (JCP) released a Java specification (JSR-82) in March
2002 defining a set of Java APIs to be used when integrating Bluetooth functionality into a Java
environment. JSR-82 defines functionality for:

• Device discovery

• Service discovery

• Service registration

• Serial Port Profile

1The reader should not that profile is a term used in both J2ME and Bluetooth contexts

2.4. Java Database Connectivity 9

• Generic Object Exchange Profile

• L2CAP layer manipulation

2.3.1 J2ME Bluetooth

An OEM distributing devices with a J2ME environment (see 2.2) may chose to include the JSR-82
optional package. If included, it must be implemented to work with their Bluetooth stack. At
the time of writing, mobile devices implementing JSR-82 are limited. Many devices are not fully
JSR-82 compliant and do not implement OBEX. The Nokia 6600 has been selected as a develop-
ment platform for the project as it is JSR-82 compliant and is readily available to the author for
programming.

2.3.2 J2SE Bluetooth

J2SE does not provide an implementation of JSR-82 as part of the J2SE. This functionality is pro-
vided by third-party software development kits (SDK) which act as an intermediary between the
Bluetooth device software and J2SE. These SDKs are often limited to specific operating system
environments. Currently there are six SDKs available, as outlined in Table 2.3.

Name javax.bluetooth
support

javax.obex
support

Operating
System

Price Notes

Atinav Yes Yes Win-32,
Linux

$4995 100% Java, No
education license
available

Avetana Yes Yes Win-32,
Linux,
MacOS X

25 Euro 100% Java, com-
mercial license free
for Linux

Blue Cove Yes No WinXP
SP2

Free Early development
stage

Harald No No Any sup-
porting
J2SE

Free 100% Java

JavaBluetooth Yes No Any sup-
porting
J2SE

Free Software develop-
ment inactive (Last
release October
2003)

Rococo Yes Yes Linux 2500
Euro

Free education li-
cense available

Table 2.3: J2SE Bluetooth (JSR-82) Implementations

In addition to SDKs, there are also a number of simulation development kits available. How-
ever, the project implementation is intended to use real hardware so these have not been re-
searched.

2.4 Java Database Connectivity

The Java Database Connectivity (JDBC) API is a set of classes for J2SE/EE that provides Java
applications with relational-database connectivity. It is SQL compliant, adhering to the SQL99
standard to ensure access to the broadest range of data sources. [7]

2.5. Distributed Systems 10

To enable connectivity to a data-source, the database must implement the JDBC specification as
part of a driver. A driver is a database manufacturers implementation of the specification to work
with their underlying database. The driver is then imported by a developer either at runtime or
statically within their code to enable the application to use database functionality. There are cur-
rently 220 JDBC-compliant drivers available, including those for major industrial databases such
as PostgreSQL, MySQL, Sybase and Oracle. [25]
Sun published the first release of the JDBC specification (1.0) in 1997; the latest version (3.0) was
released in 2002. [7] The API is included as standard in J2SE/EE. A subset of the specification
(JSR-169) is also included as an optional package (see 2.2.3) in J2ME as part of the CDC configu-
ration.

2.5 Distributed Systems

A distributed system is a collection of networked computers which communicate by only message
passing to achieve a common goal. [4] A well designed system should provide total transparency
whereby the end user is completely oblivious to the distributed nature of the system.

2.5.1 Message Passing

Messages passed between networked computers are governed by protocols. A protocol defines a set
of rules for interprocess communication including data syntax and semantics. It may also define
miscellaneous attributes such as error correction. Protocols are either lower-level (e.g. specifica-
tions for raw bit manipulation) or high-level (e.g. more descriptive definitions).

2.5.2 System Architecture

The most common distributed system architecture is the client-server model [4]; a server makes
a number of services available to its clients which connect and use the service. Typically, a client
sends a message to the server, which computes a result and then sends it back to the client. This
is known as the request-reply protocol. [4]

2.5.3 Java Remote Method Invocation

The request-reply protocol is implemented in Java by the Remote Method Invocation (RMI) API.
[24] This implementation allows methods of remote objects to be called from other, possibly non-
local, JVMs. Java RMI is available for J2SE and J2EE. A full implementation is also available for
J2ME, however this is limited only to the CDC. This is because the CLDC does not support object
serialisation, a core part of Java RMI.

Chapter 3

Analysis and Specification

3.1 Problem Analysis

Analysis of the core-technologies researched to implement the Bluetooth database bridge is un-
dertaken to formulate a requirements specification and give the project a definitive direction.

The software was initially outlined to consist of two major components; a J2ME development
library and a server-based application to enable Bluetooth access for existing databases. Research
into the Bluetooth piconet topology (see 2.1.1) is based upon a master making services available
to slaves, similar to the client-server topology found in the distributed systems research [4]. As
identified (see 2.5.2), the request-reply protocol found in the client-server topology shifts process-
ing loads from the client and onto the server. By applying the request-reply protocol to the project,
load can be moved away from the resource-constrained mobile device and onto the more capable
server machine.

Proposals for development in the J2ME environment have also been confirmed by the background
literature. Java is the obvious choice for the project as it is based upon a virtual machine archi-
tecture and abstracts away from operating system specifics, enabling the software to operate on a
number of different devices. It also has the widest support in the mobile device sector, providing
an stable and established object-oriented environment. However, it provides two configurations,
CLDC and CDC (see 2.2.1). Code developed for CDC is not backwards compatible with CLDC.
Therefore the project should be designed and implemented for the base configuration (CLDC) to
ensure maximum portability to a wider variety of devices.

Implementation of Bluetooth software in the desktop environment requires the selection of a
third-party JSR-82 implementation SDK (see 2.3.2). The potential SDKs (see Table 2.3) were as-
sessed using the following criteria:

• JSR-82 compliance to ensure standardised code

• Range of supported Operating Systems to ensure portability

• Cost and license availability

Blue Cove has not been selected as it supports only a limited environment (WinXP SP 2) which is
unsuitable for this project.
Harald is not JSR-82 compliant and although any code written using this SDK would be portable
to any J2SE runtime environment, it would be proprietary in nature.
JavaBluetooth supports partial JSR-82 compliance, but the SDK is still in the pre-alpha develop-
ment stage and is too unstable to be used. The SDK is currently inactive with no future releases

11

3.2. User & Non-Functional Requirements Definition 12

planned.
Atinav passes the compliance and OS assessment criteria, however, at $4995 with no educational
license available, it is not financially viable for this project.
Rococo provides complete JSR-82 compliance, as does Avetana. However, Rococo is limited only
to Linux whereas Avetana provides support for Win-32, Linux and MacOS X. A full commercial
license for Rococo is 2500 Euro compared to only 25 Euro for Avetana, which is free for Linux. If
the project is deployed in a commercial environment, it is important that the SDK it relies upon is
affordable. For these reasons, Avetana has been selected as the SDK to develop a J2SE application.

Investigations into database-driven desktop software showed JDBC to be the most significantly
used Java API. If possible, the software should use this existing database technology to ensure a
stability base for the project.

Based upon the background material and initial aims of the software, a specific requirements
definition has been outlines. See 3.2 for details.

3.2 User & Non-Functional Requirements Definition

1. The system should provide a mobile development API and a desktop administration appli-
cation

2. Mobile devices should be able to connect to a relational-database via Bluetooth

(a) Mobile devices should be able to connect to multiple databases simultaneously

(b) Multiple mobile devices should be able to connect to the same database simultaneously

(c) The Bluetooth communication process should be completely transparent

3. Administration of wireless databases should be simple

(a) Any legacy relational-database should be accessible by a mobile device

(b) The bridge should require minimal user input

4. The developer API should be logical, intuitive and easy to learn

(a) API should be well documented

5. The system should be stable and robust

(a) If errors occur, the system should try and automatically recover

6. The system should be efficient

(a) Resource usage (processor, memory and communication bandwidth) on mobile de-
vices should be as small as possible

(b) Database transactions should be efficient

7. The system should portable and operate in a variety of hardware and software environ-
ments

8. The system should be well designed to allow possible extensions

(a) Source code should following object-oriented and software engineering principles

(b) Code should be well documented

Chapter 4

Design

The design process is outlined in this section. Design decisions were based upon the requirements
specification and the appropriate background material.

4.1 System Design

The requirements definition specifies that the system should provide two major components; a
mobile development API and a desktop administration application (see 3.2). Each of these com-
ponents is optimised and designed for their particular runtime environment and hence discrete
in their nature. Herein, the mobile development API shall be referred to as the Client Component,
and the desktop administration application the Server Component.

As shown in Figure 4.1, the system operates using a basic distributed system, RMI framework.
[24] The client component creates a number of stub objects (Mn) which are pointers to real objects
contained in the server component (Sn). Methods called by a third-party programmer on Mn result
in a message being sent via Bluetooth to the server component to invoke the appropriate method
on Sn. Acting on behalf of the client component, Sn then executes the required method on the
database. The result is this invocation is then sent back to the client component.

All server component objects (Sn) are instances of JDBC classes which derive input from the re-
mote component. This allows the server to use stable, well tested, existing code and build on top of

Client

Server

M1

S2

S1

S3

M2

M3

Database 1

Database 2

Bluetooth Communication

Figure 4.1: High-level System Architecture

13

4.2. Module Identification 14

it, improving overall robustness and reliability. It also allows the system to connect to a range of
legacy-databases, assuming the appropriate driver is available.
As the client component stub objects simply send messages to the server, they can be programmed
using the same method definitions as found in JDBC. This allows developers to port existing
classes from the desktop/enterprise environment to a mobile device with very little code change.
It also facilitates developer knowledge re-use as the software has an already strong JDBC docu-
mentation base.
Basing the software on a distributed JDBC platform allows devices to connect to multiple databases
simultaneously thus fulfilling another of the requirements specification.
This design also allows for database enforcement of security. JDBC objects must supply creden-
tials (such as User ID and password) to connect to a database. As client component stubs effectively
“own” objects stored by the server component, the client must provide them with credentials to
connect to a database. These credentials are verified by the database itself, meaning no addi-
tional security measures are required by the bridge. This reduces security risks as the project is
no longer a ”link” in the verification chain; it simply passes information for processing to other
applications.

4.2 Module Identification

Major modules in each of the two components (client and server) will be identified and broad
functionality outlined.

4.2.1 Client Component Modules

The client component has been designed to create the smallest possible resource footprint on the
mobile device. Modules have been identified in such a way as to ensure strong cohesion and
weak coupling, allowing for further future development.

API Module

The API module is the collection of database classes available to the mobile developer. These
classes act as stub JDBC classes and generate messages to send to the server to invoke methods.
This is the single point-of-entry into the API for the third-party developer. It provides total trans-
parency to other levels of the system.

RMI Module

Due to the lack of distributed system support in the target CLDC environment (see 2.5.3), a pro-
prietary RMI framework is required. The framework requires only basic distributed system func-
tionality, most notably implementation of the request-reply protocol and error correction for stabil-
ity. [4]

Communication Module

All Bluetooth communication is contained within the Communication module. It handles the pro-
cess of device discovery, service discovery (see 2.1.1) and data transmission.

4.2.2 Server Component Modules

The server component has been designed to act as a daemon, running in the background on the
server without any user interaction. This makes the bridge easy to setup and use. As with the
client component, modules have been identified to ensure strong cohesion and weak coupling.

4.3. Client Component Module Design 15

Client Server

Database 1

Communication Module

 RMI Module

 SQL Module

Communication Module

 RMI Module

 API Module

Third-Party Developer

Bluetooth Communication

Figure 4.2: Client-Server Component Interactions

SQL Module

This module maps incoming requests from remote stub objects to locally stored JDBC objects. It
is responsible for executing methods on backend databases and returning the result.

RMI Module

Although J2SE/EE provides native support for RMI [24], it is useless in this application due to
the proprietary nature of the RMI model employed in the client component. Investigations into
mapping incoming proprietary requests to the native Java RMI API were abandoned early into
the design phase when it became clear that the client component RMI module could instead be
optimised for the desktop environment. This maximises code re-use and reduces external entity
dependency. (Java RMI).

Communication Module

As in the client-side design, communications have been separated from the rest of the system.
This module handles service registration and data transmission.

4.2.3 Module Interaction

The modules identified in the client and server components interact in the following way to facili-
tate the RMI schema required (see Figure 4.2). The red lines show the flow of data for the request;
the blue lines show the flow of data for the reply.

4.3 Client Component Module Design

4.3.1 API Module

Design Goals

• Provide a single point of entry to the client component for third-party developers

• Create stub objects for sending messages to server component

• Give the developer configuration options for the client component

4.3. Client Component Module Design 16

Database Object

Connection ResultSetStatement

Builder SQLException

InternalException

Figure 4.3: Client component API module architecture

Overview

This module is the single point of entry into the client component; all lower modules are transparent
to the developer. The module consists of five core classes (black) for database connectivity which
the developer is able utilise (see Figure 4.3). Each of these classes are stubs and form messages to
be sent to the server component for remote method invocation. In addition, two helper classes (red)
are defined for internal system use. Only the Builder object should be directly instantiated by the
developer with all other objects being created from it.

Architecture

The Builder class is the core of the entire client component. It creates an instance of the RMI module
(see 4.3.2) and the communication module (see 4.3.3) and facilitates inter-module communication.
It also creates instances of any SQL objects and links them with the newly created RMI and Com-
munication modules.
The developer can access use a single method from the API Module, Builder.getConnection(). This
returns an instance of a Connection object, which is the key object in the database class hierarchy,
with all other objects being instantiated from it.

The Connection class allows the developer to create a connection (or session) to a legacy database
residing on the server. SQL statements and results are returned in the context of a Connection.
Once the Connection object has been created, the developer is able to retrieve a Statement object
from it. The Statement class is used for executing SQL statements and returning the results it pro-
duces. To access these results, the developer retrieves a ResultSet object from the Statement object.
This class allows the developer to access the Statements results.

All database classes inherit from the DatabaseObject (see Figure 4.3) class. This base class pro-
vides functionality to format data from its sub-classes (Connection, Statement and ResultSet) be-
fore presenting it to the RMI module. Inheritance insures that the data is always presented in a
standardised way and increases code re-use and reliability. All DatabaseObject methods call this
superclass to format data to allow the RMI module to process it.

The API module objects implement a subset of the functionality provided by “real” JDBC objects.

4.3. Client Component Module Design 17

This subset includes methods that return data which can be natively represented in J2ME. For
example, CLDC does not support the float datatype and hence all methods returning float values
are not implemented. Upon instantiation of any DatabaseObject sub-class, a message is sent from
the client component to the server requesting it creates a “real”, server-side object of the same type.
This “real” object is assigned a unique identifier by the server component which is returned to the
client component and assigned to the local object. Whenever that local object request a method to
be invoked on the server component, this identifier is sent to indicate which server-object the invo-
cation should occur on.

The module also provides the developer with a number of configuration options. The developer
may set if the client component searches and connects to the server component instantly, or dynami-
cally as determined by the API. For example, if the developer wishes to create an instance of the
Builder object but then wait an arbitrary length of time for user input before making a database
request, s/he may wish to search dynamically for the server component instead of an instant con-
nection. This reduces the risk of the mobile device moving out of Bluetooth range from the server
whilst waiting for user input.
Another developer option is to set the amount of resends the client component will attempt if a
message fails to be delivered or is not correctly received by the server component. This gives the
flexibility to limit the Bluetooth bandwidth usage as well as setting the error-correction vs system
responsiveness balance according to the third-party applications use.
The final option is to set the timeout limit. This dictates how long the client component will wait for
a response from the server component and is directly related to the resend option outlined above. A
longer timeout and higher resend value may improve system reliability, but at the cost of perfor-
mance. Hence, the decision is left to the developer.

4.3.2 RMI Module

Design Goals

• Take formatted date from the API module and create messages to be sent to the server compo-
nent

• Interpret incoming messages and pass the result back to the API module

• Create a standardised messaging system for use in both client and server components

– Enforce anti-deadlocking mechanisms to ensure software does not hang

– Attempt to guarantee message delivery between the client and server components

– Ensure the messaging system is flexible and easy to change

Overview

The purpose of the RMI module is to control and implement the RMI framework. Conceptually the
module is arranged as a stack of classes which implement the Message Exchange Protocol (MEP),
similar to the OSI model. This ensures that message processing is encapsulated within layers, thus
reducing class inter-dependency and hiding the complexity and implementation of lower layers.
Acting as middleware in the overall system design, it communicates with adjacent modules (API
and communications) and hence has I/O interfaces at both the top and bottom of the stack.

The Message Exchange Protocol

The Message Exchange Protocol (MEP) is designed to create a standardised way of exchanging data
between the client and server components and is XML-based. The protocol defines the syntax and

4.3. Client Component Module Design 18

1: Create Remote Object

2: Message 1 Received Successfully

3: Object created successfully

4: Message 3 Received Successfully

Client
Server

Figure 4.4: A Simple Successful Message Exchange

semantics of messages and also defines a message acknowledgement protocol, ensuring messages
are received. It also attempt tries to use the minimum amount of bandwidth possible. [9]

XML was chosen as it is easy to read and write in the resource-constrained client component envi-
ronment [11] and is non-proprietary potentially allowing clients components written in program-
ming languages other than Java to communicate with the server component.

Acknowledgement Protocol : The most important aspect of the MEP is ensuring that appli-
cations implementing it cannot become deadlocked by waiting for a message that will never be
received. An example of this is a device sending a message that requires a return message (such as
a remote invocation) but it is never received as the device moves out of Bluetooth communication
range. In this case, the client component is deadlocked as it will indefinitely for a return message.
To counteract this scenario, the MEP has been developed with anti-deadlocking mechanisms. Due
to its complexity, a subset of its features will be outlined with illustrated examples. Each example
is based upon the same scenario: a client component requesting a new object to be created by the
server component.

Simple Successful Exchange - Figure 4.4 : All messages sent using MEP are stamped with a
signature, otherwise known as a transactionID. This is shown in the diagram as the number pre-
ceding each message. Once a message is received, the server component sends an acknowledgement
message for that transactionID, thus informing the client component it was successfully received.
The server component then sends the return data for the original “create object” message. The
client component responds by acknowledging that this return message was received. This simple
exchange identifies a key point: all non-acknowledgement messages must be acknowledged.

Non-Responsive Exchange - Figure 4.5 : This exchange illustrates the anti-deadlocking mech-
anism of the MEP. As shown, the client component sends the standard starter message to create a
new object. However, after Time t, the message has not be acknowledged by the server component
so it is re-sent using the same transactionID. Again, this re-sent message was not acknowledged so
it is re-sent again. The timeout duration for message acknowledgement and the number of resends
is determined by the implementor of the MEP. In this example, the message is acknowledged and
the exchange outlined in Figure 4.4 is completed. However, had it reached the maximum number
of resends without acknowledgement the protocol would infer that it was never going to receive

4.3. Client Component Module Design 19

1: Create Remote Object

1: Create Remote Object

.

.

.

.

Time t

1: Create Remote Object

2: Message 1 Received Successfully

.

.

.

.

Time t

3: Object created successfully

4: Message 3 Received Successfully

Client
Server

Figure 4.5: A Non-Responsive Message Exchange

a message and it should stop attempting. In the example outlined in 4.3.2, the protocol would
simply timeout and report that the connection had been lost.

Non-Responsive Exchange (Part II) - Figure 4.5 : This non-responsive exchange also illustrates
the addition of invocation semantics to the protocol. Consider the exchange give in Figure 4.5, ex-
cept each time a message is received from the client component, the server component acknowledges
it but the client component never receives the acknowledgement. In accordance with 4.3.2, the orig-
inal message will be re-sent by the client component. However, the server component has already
created the new object as requested by the client components first message. Should it process the
duplicate messages?
To solve this potential problem, invocation semantics are defined by the MEP and specify how
the implementing application should handle duplicate messages. As standard, the MEP applies
at-once-invocation; all duplicate messages result in an acknowledgement (to hopefully stop the
other party sending duplicate messages) and the return message is resent back to the calling party;
the duplicate message is not repeatedly invoked.

Simple Corrupt Exchange - Figure 4.6 : This example illustrates a simple case of message fail-
ure. Consider that the server is unable to extract the contents of a message sent by the client
component. In this case, the server does not acknowledge the message, but negatively-acknowledges
it. This causes the client to resend the message again. As in 4.3.2, the application determines how
many times a message is re-sent before the protocol should stop.
If the server is unable to read the transactionID of the message, it sends special negative acknowl-
edgement message asking for all messages sent from the client that have not been acknowledged
to be re-sent.

4.3. Client Component Module Design 20

1: Create Remote Object

2: Message 1 NOT Received Successfully

3: Object created successfully

4: Message 3 Received Successfully

Client
Server

2: Message 1 Received Successfully

1: Create Remote Object

Figure 4.6: A Simple Corrupt Exchange

Disordered Message Exchange - Figure 4.7 : In this example, a return message is received by
the client component before the message that caused the invocation has been acknowledged. In
this case, the client component discards the message. This ensures that applications implementing
the protocol MUST acknowledge all non-acknowledgement messages (see 4.3.2) and cannot have
partial MEP implementation.2

Syntax and Semantics

The syntax and semantics of messages are governed by a Document Type Definition (DTD). DTDs
are common within XML for defining valid document contents. The MEP DTD defines a set of
shared tags that describe the semantics of the data contained within a message. These tags and
their definitions are shown in Table 4.1.

Tag Name Attributes Definition
ACK TRANSACTION ID ACKnowledges successful receipt of a message
NACK TRANSACTION ID NegativelyACKnowledges receipt of a message
CRE TYPE Instructs the server component to CREate an object of the

specified TYPE
DEL IDENTIFIER Instructs the server component to DELete the object with

the corresponding IDENTIFIER
RET TRANSACTION ID,

RETURN TYPE,
RETURN DATA

Returns data from a remote invocation for a given
TRANSACTION ID, giving its RETURN TYPE and
the RETURN DATA

2In this case, the client component would simply timeout waiting for an acknowledgement and resend the original
message to the server component. This would cause the server component to re-send an acknowledgement and the return
data, therefore not deadlocking.

4.3. Client Component Module Design 21

METH IDENTIFIER,
METHOD, RE-
TURN TYPE,
PARAME-
TER NUMBER

Instructs the server component to invoke the METHod
on the object with the corresponding IDENTIFIER.
It contains PARAMETER NUMBER parameters and
expects the method should return the data of RE-
TURN TYPE. Note: this tag may contain 0 or more PA-
RAMETER tags.

PARAMETER PARAMETER ID,
PARAME-
TER TYPE, PA-
RAMETER DATA

Instructs the server component the PARAMETER TYPE
and its PARAMETER DATA of a METHod

Table 4.1: Message Exchange Protocol Tag Definition

RMI Stack

The stack (see Figure 4.8) implements the features required by the MEP (see 4.3.2). The left side
of the stack deals with outgoing messages and the right, incoming. Note: the Messaging layer
represents a package of classes that implement the tags defined in the MEP. At the top of the
stack, requests from the API module to send messages are incoming and returned data from sent
messages is outgoing. At the bottom of the stack, messages passed from the communication module
are incoming and messages formed for sending are outgoing.
The dashed arrow represents raw data being passed into the module from the communication mod-
ule, where Mi is the incoming message.

The Receiver class checks Mi for syntactic validity and strips the signature MEP data. It is then
passed to the Interpreter.

The Interpreter class applies the at-once-invocation semantics to Mi. It then strips the MEP tag
data and analyses the message type to decide which part of the module it should be passed to;
this may be either the Handshaker or Control class.

The Handshaker processes incoming and outgoing acknowledgement messages in accordance with
the MEP. It performs the following functions where Mi is:

• an incoming acknowledgement, sets the message the acknowledgement is for as acknowl-
edged. Processing of Mi has now finished

• an incoming negative acknowledgement, resends the message the negative acknowledgement
is for. Processing of Mi has now finished

The Handshaker also sends acknowledgements for messages received, where dictated by the MEP.
It creates the data to be sent and then passes it to the Control classes which processes it as a regular
message.

Control is core class of the RMI module. It accepts incoming requests from the API module above to
send data and then passes it down the stack for processing. It maintains a list of sent messages
and is responsible for messaging signing in accordance with MEP. Incoming data from the Inter-
preter layer is also processed, and if it is return data for a sent message, the result is returned to
the callee from the API module.

The Checker implements the timeout and resend functionality described by the MEP. It period-
ically checks the Control class’ list of sent messages for any that have not been acknowledged. It

4.3. Client Component Module Design 22

1: Create Remote Object

2: Message 1 Received Successfully

3: Object created successfully

Client
Server

Figure 4.7: A Disordered Message Exchange

 Dispatcher Receiver

 Messaging

 Transaction

 Wrapper

 Intepreter

Handshaker

 Checker

 Control

M
iM

o

Figure 4.8: Client/Server component RMI stack architecture

4.4. Server Component Module Design 23

 Connection

 Control

Figure 4.9: Client component Communication module architecture

then requests the Control class resends all messages currently not acknowledged.

The Wrapper class takes the raw data to be sent as a message and applies the MEP tag data. This
creates a new message, Mo.
The Transaction class applies the MEP signature data to Mo and the Dispatcher passes Mo to the
communication module.

4.3.3 Communication Module

Design Goals

• Search for Bluetooth devices and query for appropriate services

• Create a communication channel for data exchange via Bluetooth.

Overview

The purpose of the communication module (see Figure 4.9) it to communicate with the server com-
ponent via Bluetooth. The module provides a single I/O interface for the RMI module to use, thus
reducing module inter-dependency. The Control class is responsible for maintaining any connec-
tions that the client component will have with the server component. It has been designed to spawn a
Connection thread [3] which makes the Bluetooth connection to the server and acts a data channel.
The spawning behaviour is determined by the developer at runtime (see 4.3.1).

The Connection implements a subset of functionality defined by JSR-82 (see 2.3.1). The thread
is completely automated and will search for devices, query their services and connect to a device
offering the DBlue service. It will also create a data stream to allow data exchange.
The module’s I/O interface uses synchronised methods. This ensures that the data stream for data
exchange cannot be interrupted during transmission resulting in data corruption.

4.4 Server Component Module Design

4.4.1 Communication Module

Design Goals

• Register Bluetooth service

• Create a communication channel for data exchange via Bluetooth

• Manage remotely connected client components

• Pass data to the RMI module

4.4. Server Component Module Design 24

ConnConn Conn Conn

 Checker Ping

 Control

...........

Figure 4.10: Server component Communication module architecture

Overview

The server component’s communication module (see Figure 4.10) is similar in operation to the client
component equivalent. It is responsible for maintaining all active client component connections and
passing data sent from them to the RMI module.

The Connection class is responsible for acting a data channel between the server and client com-
ponents. It implements a subset of JSR-82, notably service registration and opening a Bluetooth
communication channel. Once created, the thread opens a data stream and blocks, waiting for
incoming requests.

Each client component is connected to a different Connection thread. This allows the server to sup-
port multiple simultaneous clients components as no single one can block the service. Note: the
number of simultaneous connections is limited by the Bluetooth piconet architecture (see 2.1.1).

When a connection is made to use the database service by a client component, the Connection it
uses registers itself as active with the Control class. Similarly, if the connection is closed by the
client, the Connection thread terminates and notifies the Control class that it is dead. Any incom-
ing client data is passed from the Connection to the Control class. This hides the processing of
data from the Connection and potentially allows it to be altered to become an generic communica-
tion channel for other communication links, eg IrDA, WiFi. Connection threads are created by the
Checker class.

All communications are controlled by the Control class. Upon creation it spawns a Checker and
Ping thread and starts their execution. The Control class’ main role is to maintain a list of Connec-
tions. List manipulation is by synchronised methods to ensure concurrent access does not result
in data corruption. When a Connection becomes active, the Control class creates an RMI stack for
the Connection and binds the two together; all incoming data from a given Connection is passed
to its associated stack. Dynamically creating a stack per connection ensures safety and robust-
ness; if a client component becomes corrupt and attempts to bring down the server component, it is
only possible for the client to attack the stack its Connection is bound to. This ensures safety by
isolating each client component’s user data. It also ensures that any possible bugs or crashes are
confined to a single RMI stack that has no shared data with other clients creating a robust envi-
ronment. The Checker thread runs periodically and acts as a Connection pool manager. At any time,
the total number of Connection threads must equal the maximum number permitted, where Ct is
the total number of connections, Ca the number of active connections and Cw number of waiting
connections.

if(Ct != Ca + Cw) create new Connection thread

Connection thread information is obtained from the Control class via synchronised methods (see
above). The use of the Checker class ensures that the server component makes itself available to the

4.4. Server Component Module Design 25

 Communication Module

Client A Client B Client C

Stack A

Client
Data A

Stack B

Client
Data B

Stack C

Client
Data C

Environment A Environment B Environment C

Figure 4.11: Server component RMI module isolation

maximum number of possible clients and makes the process of creating new Connection threads
automated.

A Ping thread runs periodically to check to see if any Connection threads have become idle for
long periods of time. It uses the synchronised list methods of Control to iterate through each
Connection to send a message asking the client component if it is still alive. If a reply hasn’t been
received within an administrator set timeout limit, Ping asks Control to destroy the connection and
its associated stack and user data.
Ping ensures that clients do not become idle and deadlock the service. With a maximum of only
seven clients [27], it is important that access to the bridge is not restricted by idle clients.

4.4.2 RMI Stack

Design Goals

• Take raw data from the communication module for processing

• Process and interpret incoming messages and pass them to the SQL module

• Implement the MEP (see 4.3.2)

Overview

The RMI module controls and implements the RMI-framework as set out by the MEP. It is ar-
ranged as a stack of classes, the same as found in the client component RMI Module (see Figure
4.8). However, the server component implementation is optimised for the desktop and will differ
in implementation of two layers of the stack, Interpreter and Control.

4.4. Server Component Module Design 26

 ObjectManager

 Checker

 DatabaseObjects

Figure 4.12: Server component SQL module architecture

The Interpreter class uses a different subset of MEP tags to the client component equivalent, specifi-
cally those for method invocation, object creation and deletion. Once the MEP tag data has been
stripped from the message, it is passed to the relevant part of the module, as in the client component
RMI module.
The Control class accepts requests for object management messages (creation, deletion, method
invocation) and passes the request to the SQL module. The result returned from the SQL module is
then passed down the left hand side of the stack (see Figure 4.8 to form a new message to be sent
to the client component. It also maintains a list of sent messages and is responsible for message
signing.

4.4.3 SQL Module

Design Goals

• Manage JDBC objects for client component stub owners

• Execute database functions and return data to the RMI module

Overview

This module executes requests from the RMI module and returns the result to be sent as messages
to the client component. It is also responsible for maintaining information about remotely created
objects.
Each RMI module has its own ObjectManager. Although this increases the server components mem-
ory overhead, it improves overall safety and robustness by isolating user data from other client
component connections (see Figure 4.11).

At the core of the SQL module (see Figure 4.12) is the ObjectManager with all incoming and out-
going data passing through it. Its main function is to control the creation, deletion and usage
of remotely accessible objects. Incoming creation requests result in a JDBC-wrapper object being
created (see below) and assigned a unique ID. This ID and confirmation of creation is then sent
back down to the RMI module.
A request to invoke a method on a remotely created object is subject to method signature valida-
tion. The ObjectManager checks the target objects method name and parameters (both number
and type) before execution. If this validation fails, an error is thrown back to the RMI module
which sends it as a failure message to the client component. This pre-verification of method calls
ensures that faulty method calls cannot be sent to attempt to crash the server component.
The method call is then sent to the relevant object and its result returned to the RMI module to be
dispatched as a return message to the client component.

Each Database object inherits from the DatabaseObject base class (see Figure 4.13). The func-

4.4. Server Component Module Design 27

Database Object

Connection ResultSetStatement

Figure 4.13: Server component SQL module classes

tionality provided by DatabaseObject is to scan the source code of the subclasses so give the Ob-
jectManager a list of method signatures for pre-invocation verification. Each time a new subclass
instance is created, the source code of that object is parsed and its method signatures loaded into
memory. By scanning when objects are instantiated instead of at compile-time, it allows the func-
tions that the database objects provide to be altered at runtime without any need to restart the
server component. This improves service up-time and ensures that currently connected client com-
ponents are not impacted if the backend database objects are altered.

ResultSet, Statement and Connection are simple classes that wrap around the JDBC ResultSet, State-
ment and Connection classes. These wrappers convert the internal data presentation and data
syntax to that of JDBC. This allows presentation and syntax consistency throughout the rest of the
server component, only being converted at the “final-stage”.

Results from method invocation on the DatabaseObject are passed back to the ObjectManager which
in turn passes the result to the RMI module.

Chapter 5

Implementation

The core implementation details of the project are outlined and, where appropriate, code extracts
given.

5.1 Overview

The system was implemented using Java 2 Standard Edition SDK v1.5.0 (server component), Java
2 Mobile Edition CLDC configuration v1.0 (client component) and the J2ME Wireless Toolkit v2.2
(client component). The mobile test platform was a Nokia 6600 running Symbian OS; the server
and development platform was a Gentoo Linux machine running v2.6.10 kernel using the Bluez
Bluetooth driver. It relies upon a Bluetooth SDK (Avetana) to link the desktop Java environment
to the Bluetooth hardware. The system adheres to good software engineering practices and is
object-oriented throughout. Code has been implemented to be small and efficient whilst allowing
it to be extensible. It also has extensive error handling to ensure reliability.

5.1.1 Package Structure

Components and modules have been separated into packages for improved code maintainability,
as shown in Figure 5.1. A full class listing is available in Appendix B.

As shown, code is structured into main component packages; Mobile and Server. There is also
another packages, Shared, which contains code that is common to both components. The Messag-
ing package contains classes required for the implementation of the MEP and hence is common
to both components. Exceptions are also common to both components due to the distributed na-
ture of the system. Util contains a number of house-keeping classes common to both components.

The Mobile package contains implementations of the modules defined in the system design (see
4.2.1). It also contains a utility package which contains the same house-keeping classes found in
the shared package, but optimised for the light-weight environment. These classes also provide
functionality not included in J2ME, such as regular expression matching and support for the Ob-
server/Observable paradigm.

The server package contains implementations of the modules defined in the system design (see
4.2.2). It should be noted that classes within the comms package define the operation of any com-
munications mechanism. In this project, Bluetooth was implemented but the design allows for
development of other communication mechanisms simply by implementing the defined inter-
faces.

28

5.2. Client Component 29

uk.co.dblue

mobile

server

shared

messaging

format tags

util

comms

bluetooth

sql

def

exceptions

rmi

comms

bluetooth

sql rmi util

Figure 5.1: Project package structure

5.2 Client Component

5.2.1 API Module

Overview

All of the API classes (Connection, Statement and ResultSet) contain simple methods which wrap
the data that needs to be transmitted to the server in a consistent internal format. This is per-
formed by making a call to their superclass (DatabaseObject) which takes in the data that needs
to be wrapped and presents in the systems internal data structure. The module then passes the
data structure to the RMI module which continues processing. All developer accessible API classes
simply act as pointers to objects stored on the server component.

Key Discussions

• System’s internal data structure

• Data presentation for RMI module

• Object creation and deletion

Internal Data Structure

Data within the system flows through a number of modules and is modified by a number of dif-
ferent classes. It was decided to use a Hashtable for internal data representation to allow easy code
maintainability and improved reliability. A Hashtable permits values to be accessed by reference
(a key) instead of by direct access, eg array index. By ensuring that data is accessed by reference,

5.2. Client Component 30

private static final String command = \"METH\";

private static final String[] attributes = {\"OBJECT_ID\", \"METHOD\", \"RET_TYPE\", \"PARAM_NUM\"};

public MethodTag() {

super(command,attributes);

}

public String getObjectIDString() {

return attributes[0];

}

public String getMethodString() {

return attributes[1];

}

...

Figure 5.2: Code sample of MethodTag class

code changes can be implemented in a single class that do not depend upon other aspects of the
system. For example, consider that data is represented by a string in the following, absolute, way:

Object:ID:Method:Parameter

If one part of the RMI module wishes to modify the syntax (say, by swapping ID and Object ele-
ments), this may cause other parts of the code to break. By abstracting away from ”hard” data
representation to the Hashtable, the code has become more reliable and easier to maintain. How-
ever, this does have a slightly higher memory overhead but is considered acceptable3.

Data Presentation

The Hashtable format relies upon referential access by unique key. These keys have been cen-
tralised (see 5.1.1) in the messaging package. As the package shows, there are a number of Tags that
define the syntax for particular data types. Shown in Figure 5.2 is an extract from the Method-
Tag class which defines the syntax of data for a remote method call. Classes using the messaging
package must use the accessor methods to access the key value. This ensures that the key can be
changed at any time without breaking code reliant upon it.
The DatabaseObject superclass uses these tags as keys for use in the internal representation Hashtable.
Shown in Figure 5.3 is a method called by all sub-classes which takes raw data and applies the
internal representation before passing to the RMI module.

Object creation and deletion

As outlined in the module design, creation of API objects results in a message being sent to the
server component to request the creation of the appropriate object. An identifier is returned to
the client API object and is used to access the server component object. Upon instantiation, the API
objects call a method in their superclass which creates a message using the internal representation
format and sends a request to the server component to create the appropriate server-object. The
server component objects contain a number of variables that are set at run-time. To allow the client
component stub objects to use these variables, a copy of the variable is requested from the server
component and is set at instantiation. This allows the third-party developer to use the variable
within their code without a number of duplicate messages being sent from the client component to
the server component to find the variable value. An example a ResultSet instantiation is shown in
Figure 5.4.

3Hashtable is the only member of the J2SE Collections framework found in J2ME that allows referential element access

5.2. Client Component 31

public Hashtable makeMethodCallTable(Integer objectID, String method, String returnType, String parameterType[], String parameters[]) {

Hashtable command = new Hashtable();

MethodTag meth = new MethodTag();

command.put(meth.getObjectIDString(), objectID.toString());

command.put(meth.getMethodString(), method);

command.put(meth.getReturnTypeString(), returnType);

if (parameterType == null) {

command.put(meth.getParameterNumberString(), "0");

return command;

}

else {

command.put(meth.getParameterNumberString(), new Integer(parameters.length).toString());

Hashtable[] params = new Hashtable[parameters.length];

ParameterTag para = new ParameterTag();

for(int i=0; i<parameters.length; i++) {

params[i] = new Hashtable();

params[i].put(para.getParameterIDString(), new Integer(i).toString());

params[i].put(para.getParameterTypeString(), parameterType[i]);

params[i].put(para.getParameterDataString(), parameters[i]);

command.put(para.getTag() + i, params[i]);

}

}

return command;

}

Figure 5.3: Code sample of DatabaseObject method for data presentation

public ResultSet(Integer objectID, Control control) throws SQLException {

this.objectID = objectID;

this.control = control;

this.CLOSE_CURSORS_AT_COMMIT = getCLOSE_CURSORS_AT_COMMIT();

this.CONCUR_READ_ONLY = getCONCUR_READ_ONLY();

this.CONCUR_UPDATABLE = getCONCUR_UPDATABLE();

this.FETCH_FORWARD = getFETCH_FORWARD();

...

}

Figure 5.4: Code sample of ResultSet instantiation

5.2.2 RMI Module

Overview

The RMI module implements the functionality defined by the MEP (see 4.3.2). It accepts incoming
messages requests from the API module and blocks the call until a reply has been received from
the server component, or the message has failed. XML messages are created from incoming data
by incrementally adding syntax information to the raw data; this data is then passed out of the
module for transmission. Incoming XML messages are parsed using a SAX-based parser and are
internally validated. The content of return messages is passed back to the API module and the call
unblocked.

Key Discussions

• Remote method calls

• XML message formatting

• Message parsing and validation

Remote method calls

At the heart of the client RMI module is the Control class. Its purpose was to accept incoming
requests from the API module and send data down the stack for processing. It also takes data from
the Interpreter and passes it back to the API object callee. During implementation it was decided
to allow only a single request to be accepted from the API module at any one time (blocking).
By doing so, it ensured that the third-party application could not get ahead of the database and
message processing. For example, consider a fragment of third-party code shown in Figure 5.5

5.2. Client Component 32

...

Connection conn = builder.getConnection();

conn.connect(\"postgresql\", \"localhost\", \"test\", \"postgres\", \"\");

Statement st = conn.createStatement();

ResultSet rs = st.executeQuery(\"SELECT * FROM testtable\");

while (rs.next())

{

String field1 = rs.getString(\"field1\");

String field2 = rs.getString(\"field2\");

f.append(\"Field1: \"+field1 + \", Field2: \"+field2 + \"\n\");

}

}

...

Figure 5.5: Third-party code example

...

if (function.equals("delete"))

return null;

//return immediately to finalizer - don’t need to wait for the server to respond as API object is being deleted by garbage collector

transactionReturnDataSet = false;

while (!transactionReturnDataSet) {}

//check to see if its an exception otherwise return

if (transactionReturnData instanceof SQLException)

throw (SQLException)transactionReturnData;

outgoingTransaction = null;

return transactionReturnData;

...

Figure 5.6: Blocking Control class code

utilising a database. If the RMI module was not blocking, it could be possible for the third-party
application to attempt to execute a query (line 7) on a Connection object (line 1) that had not yet
been created on the server. This would cause a number of errors leading to a number of messages
being sent between the client and server components to try and solve the problem. To achieve
blocking behaviour, the method called by the API module database objects is shown in Figure
5.6. To achieve blocking, the method enters a loop. This loop is broken when data is set by the
Interpreter, or if the Checker notices the message has timed-out.
The Control class was originally designed to maintain a list of outgoing messages. However, since
only a single transaction can be processed, this was replaced by a globally accessible variable
that stores the message. Access to this variable is by a number of accessor methods to ensure
simultaneous access from the Interpreter and Checker classes does not cause data corruption.

XML message formatting

XML message formatting was completed iteratively, with syntactic information being added to
the message through a number of stages. The messaging package used for internal data represen-
tation was also used to provide Strings for the XML tags. An example XML message is shown in
Figure 5.7. Note: the message still contains the TIME STAMP attribute as part of the COMMAND
tag. Originally this was designed to allow for multiple messages to be sent simultaneously and
processed according to their logical clock time. As outlined, only a single message is processed at
any one time and the TIME STAMP is redundant. However, it has remained to allow future code
maintainers to modify the application to support multiple, simultaneous messages. The signature

<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<!DOCTYPE COMMAND SYSTEM ‘‘commands.dtd>

<COMMAND TRANSACTION_ID=\"1\" TIME_STAMP=\"\$TIME_STAMP\$\">

<CONTENT>

<CRE TYPE=\"ResultSet\">

</CONTENT>

</COMMAND>

Figure 5.7: Example XML message to create a server side ResultSet object

5.2. Client Component 33

public String replace(String data, String rep, String value) {

return data.substring(0, data.indexOf(\"\$\" + rep + \"\$\")) + value + data.substring((d.indexOf(\"\$\" + rep + \"\$\") +

rep.length() + 2), d.length());

}

Figure 5.8: Code sample of regular expression function

part of the message (see Figure 5.7 line 1-3) was implemented to use a string constant, replacing
parts of it with variable values where appropriate. For example, in the sample message, the value
of TRANSACTION ID was replaced as the message was created. This string manipulation is not
present in J2ME and was implemented using a simple regular expression function that searches a
string for variables within delimiter characters ($) and replaces them with a value.

Message parsing and validation

Although both of the system components use XML for data representation, they parse incoming
data differently owing to their environmental strengths. Both perform the parsing in the Receiver
class of the RMI module. The server component uses SAX to extract data from the XML as opposed
to DOM. [14] SAX was chosen as it is able to process documents faster with a lower memory
consumption than DOM. The XML is validated by using a DTD to ensure that no information is
missing, as well as being validated by the parsing code itself.

A second reason for the use of SAX for the server component code is its portability to the client
component. [11] Although J2ME does not support XML parsing, a third-party developer has pro-
duced a light-weight parser for mobile devices called kXML. The use of third-party code increases
total memory footprint of the application, but it was decided for speed of development this would
be acceptable. It provides a basic, event-driven XML parser similar to SAX. Although it requires
some modification of the code developed for the server component, the principles of its operation
were easily ported to the mobile environment. It does not included document validation (by
DTD) but the XML is validated using the messaging classes. In the same way that messages are
created using the attributes defined specified in the messaging Tags, the reverse is possible. Once
a message has been parsed, the parser checks each of the attributes found in the XML message
against the expected attributes listed in the relevant Tag. If all the attributes are present, the mes-
sage is valid.

5.2.3 Communication Module

Overview

The Communication module implements the functionality defined by JSR-82 as well as creating
Input/OutputStreams for data transmission. String formatted XML messages are passed from
the RMI module above and sent “as-is” to the server component. Similarly, messages are received
from the server component and passed “as-is” to the RMI module.

Key Discussions

• Datastream Issues

Datastream Issues

The Connection class implements the client-side Bluetooth functionality. It is threaded and imple-
ments DiscoveryListener (defined in JSR-82) providing methods for device and service discovery. It

5.3. Server Component 34

while (connected) {

int numUTFStrings = inputStream.readInt(); //reads in the number of messages expected to receive

String msg = "";

while (numUTFStrings-- > 0)

msg = msg + inputStream.readUTF();

incoming(msg);

}

Figure 5.9: Code sample of reading Bluetooth data

also creates input and output streams to send and receive data and uses globally accessible vari-
ables to indicate if the object is connected. These are used by the Control class to determine if the
Connection is ready to send/receive data.

Problems during implementation were found when attempting to send and receive long strings
of text. J2ME defines the OutputStream/InputStream classes which have methods, writeUTF and
ReadUTF, allowing arbitrary length strings to be sent and received. However, on the mobile test
device the J2ME implementation threw exceptions when using these methods with strings longer
than 50 characters. To counteract this, long strings are divided into smaller segments. A message
is sent to the remote device indicating the number of segments it should expect to receive, thus
allowing the full message to be reconstructed (see Figure 5.9).

5.3 Server Component

5.3.1 SQL Module

Overview

The SQL module takes an input from the RMI module and executes the required function on a lo-
cally stored object. Each method invocation is verified to be correct before it is executed. Database
objects are wrappers around r̈ealJ̈DBC objects and convert the internal data representation to that
required by JDBC. Database objects scan their own source code at runtime to create a list of valid
methods for this pre-verification. This is performed by a custom built regular expression checker.

Key Discussions

• Data Presentation

• Regular Expression Checker

Data Presentation

To ensure consistency, data was presented in same way as found in the client component; by
Hashtable to ensure referential access to data and reduce coupling between modules (see 5.2.1).
Data is converted from the internal presentation method to that of the JDBC objects.

Regular Expression Checker

During implementation the regular expression checker was initially developed using a third-
party parser, JavaCC. This tool uses the Java programming language grammar to create a number
of parser classes that will scan a body of source code and perform operations on the code. How-
ever, although this parser solved the problem, it was too heavy for such a process that needed to
be fast and memory efficient. A custom built parser was written that used functionality from the
Java regular expression library to scan the interface definitions for each object. This extracts all
method signatures which are then loaded into a Hashtable and used to verify methods before they
were executed.

5.3. Server Component 35

5.3.2 RMI Module

Overview

The RMI module implements the same functionality described in the client component RMI module
(see 5.2.2). It accepts incoming messages from the communication module and parses them using a
SAX parser before passing to the SQL module. The return data passed back from the SQL module
is used to create XML messages by incrementally adding syntax information to the raw data; this
data is then passed out of the module for transmission.

Key Discussions

• N/A - implementation problems were solved in the client component RMI module and simply
ported to the server component

5.3.3 Communication Module

The communication module implements the functionality defined by JSR-82 as well as creating In-
put/OutputStreams for data transmission. String formatted XML messages are passed from the
RMI module above and sent “as-is” to the client component. Similarly, messages are received from
the client component are passed “as-is” to the RMI module. The module also performs connection
maintenance by monitoring the status of connections.

Key Discussions

• Datastream Issues

• Client Pings

Datastream Issues

See 5.2.3.

Client Pings

To ensure that the bridge is available to the largest possible number of clients, idle or d̈eadc̈onnections
are removed. The initial design required that a ping message was sent from the server component to
the client component to check if it was alive. However, during implementation this caused a num-
ber of problems. If the client component was no longer alive, attempting to send a ping message
would cause an exception to be thrown by the OutputStream as it could no longer find the other
party it was communicating with. To solve this problem, the Connection class stores the last time
the communication channel was active (data sent or received) in a globally accessible variable.
Each time the Ping thread runs, it checks the value of the last used variable of each communica-
tion channel and subtracts it from the current time. If the result is greater than the timeout set by
the administrator, the Connection and associated data is destroyed.
This method of checking if the client component is alive reduces Bluetooth bandwidth usage and
lowers the exception rate caused by I/O stream errors.

Chapter 6

Testing

6.1 Introduction

Testing was applied using a bottom-up methodology and applied at all stages of the project. With
a project of such magnitude, it is impossible to test every aspect of the system. At all stages, tests
were selected using risk-driven analysis to ensure that the most critical parts of code have testing
priority. This assessment is similar to risk analysis (see 7.3) and attempted to select testing by
likelihood of the error occurring and possible impact.

6.2 Testing Strategy

During development, unit testing was applied using a variety of techniques. A number of crafted
inputs were developed to test the unit code using functional testing methodologies. These tests
were broken into three broad groups; boundary-value testing, decision tables and special value
testing.
Boundary-value testing relies upon the principle that most errors occur at a boundary of a particu-
lar functions input domain. [5] These tests used negative testing by exceeding valid input bound-
aries in order to assess code robustness. Decision table tests were used in a number of isolated
cases where multiple combinations of conditions could occur, eg nested statements. Special-value
tests were crafted to exploit special cases that may not typically arise. For example, tests to ensure
object casting was reliable were developed.
This process was applied continuously to code which was changed to reflect testing outcomes.
The latest Java development kit provides a number of static-source-code-analysis (SSCA) tools
designed to predict possible runtime errors before they occur. These were used during unit com-
pilation to check possible erroneous run-time behaviour.

Integration testing was applied when units were integrated into modules. Dependencies between
module output and inputs were first derived in order to structure testing in a systematic way and
reduce test duplication. A number of functional tests were then produced, similar in nature to
those used in unit testing. Regression testing was then applied. Stubs were created and added
to a module to create an initial framework. Each stub had a pre-defined behaviour and in many
cases returned a pre-computed value. Individual units were then added into the component, re-
placing the existing stub version. The functional tests were then applied; if the component failed,
it could be assumed that the failure was due to an interaction between the recently added unit
and another unit. This process was repeated iteratively until each component had no stub units.
Due to a large number of possible failure combinations as each unit was added, testing was heav-
ily automated. Each component had a test harness designed which gave a random input from a

36

6.2. Testing Strategy 37

Figure 6.1: Graph of load testing performance

set of crafted possibilities. The output from the module was noted and compared to the expected
result. This ensured consistent module testing and isolated failures to specific unit interactions.

Following integration testing, system testing was applied when modules were linked. Testing
methodologies here relied upon testing the structural aspects of the project and ensured that
specifications were being met. Although difficult to achieve, tests were developed to make no as-
sumption of internal operation. As with integration and unit testing, critical outputs and inputs
were identified and tested. This was achieved by writing a simple third-party test application
using various aspects of the project and noting the results. Load testing was also applied to the
system by sending a large number (16,000) of identical transaction requests from a mobile device
to the server. As shown in Figure 6.1, each test only sent approximately 4,000 transactions before
both the client and server components crashed. However, the crash was not due to a programming
error (eg an uncaught exception), but an internal VM error. The server reported a HotSpot error
and the mobile phone a Monty-Thread error. This behaviour is fully reproduce-able but its cause
remains unknown. The bug has however been accepted as few mobile applications will request
4,000 transactions during the lifetime of a connection, effectively resetting the software. Note: the
continual fluctuation of message throughput shown in the graph is due to variations in the avail-
able Bluetooth bandwidth; this cannot be affected by either the client or server software. Stress
testing was also applied by affecting Bluetooth network usage, moving the mobile device into
and out of range of the server machine.

Chapter 7

Project Management

7.1 Time Planning

With a significant amount of work to be completed over a seven-month period, organisation of
time was critical for the project to succeed. During the planning phase, a Gaant chart was pro-
duced which outlined the estimated time to be spent on each phase of the project. Although
useful as a guide, it proved to be unrealistic due to a lack in domain knowledge. It also assumed
a linear, discrete phase, development cycle, but in reality a more iterative approach was taken. A
significantly larger amount of time was spent researching and designing than originally assigned,
with implementation taking much less time. However, the total workload remained balanced al-
lowing the project to be completed on time. As the project progressed passed the research phase,
time planning became more realistic and achievable.

7.2 Project Lifecycle

The software was developed using the iterative lifecycle model, with functionality being added
during incremental version releases. This allowed requirements to be prioritised, implemented
and researched accordingly. Mission critical requirements and high-risk areas were addressed in
earlier releases, with less critical requirements implemented in later releases. This ensured that
the minimum level of functionality was achieved before extensions were attempted. For example,
core Bluetooth communication was established during the first month of the project and refined
during later releases. This also ensured that the risk-driven testing strategy (see 6.1) was adhered
to by testing releases with high-risk features before implementing additional functionality.

Figure 7.1: Gaant chart of early time-scheduling

38

7.3. Risk Identification and Management 39

The iterative lifecycle also facilitated ”just-in-time” background research. High-level research
was conducted to produce an architecture design, but more detailed research was undertaken
when the relevant problem area was addressed by a release. Due to the large volume of research
material covered, it allowed focus to be given to specific areas and improved assimilation of in-
formation.

To reduce risk of data corruption and/or data loss, the project was managed using a combina-
tion of a version control system, CVS, and a proprietary backup system. This lent itself well to
the release based nature of the lifecycle allowing software to be ’rolled-back’ where appropriate.

7.3 Risk Identification and Management

High-level risk was identified early into the project and covered a number of general risks includ-
ing data loss, failure to meet requirements, lack of relevant knowledge and poor system perfor-
mance. Each of these risks was assessed and rated for probability of it occurring and potential
impact; a strategy to handle each identified risk was then produced.
Each planned iteration of the lifecycle (see 7.2) was assessed and assigned an overall risk value
based upon the criteria used above. This risk value was then used to determine in which release
functionality should be implemented and tested.

Chapter 8

Appraisal

8.1 Assessment

Based upon the original specification (see 3.2), the project fulfilled each outlined requirement to
a high-quality standard. The project also demonstrates significant application and integration of
programming and computer science skills from a range of subject areas, as well as research into
cutting-edge technologies.

The system has been developed with a focus on extendibility and attempts to use existing stan-
dards and technology where available. Where new problem solutions have been developed,
specifically the MEP (see 4.3.2), they have been designed to use non-proprietary technologies
such as XML. This enables future bridge developers to create custom implementations of the pro-
grammer API for use in non-Java environments such as Windows Mobile.
The software is completely modular, adhering to software engineering principles and designed to
allow extendibility into a “wireless” database bridge. Assuming a suitable communication mod-
ule is implemented by a bridge maintainer, communication between the database and a mobile
application can move from using Bluetooth to another technology such as WiFi easily and quickly.

Basing the developer API library on an existing database connection platform (JDBC), the soft-
ware allows developers to transfer development skills from the desktop to mobile applications
with little new knowledge required. It also gives flexibility to port existing database dependent
code from the desktop to the mobile platform with very few alterations. This improves applica-
tion reliability by code re-use and reduces development time.
The API provides potential developers with a significant number (118) of database operations,
including those core to all database systems. It has also been implemented to ensure compatibil-
ity with any J2ME compliant device. Finally, it is small (25KB) allowing it to be included in most
mobile applications. However, if a developer finds they are not using all the database features
provided by the library, the design allows them to easily customise it by removing redundant
functionality reducing the memory footprint.

Enabling legacy databases to be accessed wirelessly is simple and requires no user input mak-
ing the software perfect for running on as a daemon. The server application supports multiple
device connections and isolates client data for security and reliability. The server software has
also been designed to be “hot-swappable” allowing parts of the system to be altered during exe-
cution. This allows mobile clients to remain connected whilst maintenance is performed and does
not result in “down-time”.

40

8.2. Performance and Stability 41

8.2 Performance and Stability

The system shows good performance and a high degree of robustness. The code is fault tolerant
and employs a number of error handling mechanisms throughout all parts of the system. Per-
formance depends largely upon the target mobile device and the server machine hardware. As
outlined in Testing (see 6.1), throughput of database transactions is heavily limited by Bluetooth’s
low transmission rate.

Chapter 9

Evaluation

9.1 Achievements Overview

The project has produced a stable and usable platform for the development of database-driven
mobile applications. The API library is based upon existing Java database technology (JDBC) and
is simple, intuitive and easy to learn. It requires developers to have no knowledge of Bluetooth or
wireless communication technologies as its operation is completely transparent.
The server application enables mobile developers to connect to virtually any legacy database and
is simple and easy to use, running as a service daemon on the database server.

The software has been designed to be highly extendable through good software engineering prac-
tices, enabling easy customisation for particular usage scenarios.

9.2 Extensions

With more time, the project could easily be extended and modified in a number of ways.

9.2.1 Further Testing

Although J2ME is based on a set specification, OEM implementations vary greatly between de-
vices. Through personal experience, code that executes correctly on one device appears to fail on
another. Although the software was tested extensively using the Nokia 6600, no other devices
were used for testing. With access to a range of devices, bugs common to all environments could
be established, as opposed to errors in OEMs Java implementations.
Similarly, the server application was tested heavily in Linux, but not in any other environments.
However, Java’s “write-once-run-anywhere” mantra should enable execution also in Windows
and MacOS.
Finally, a persistent problem of VM crashes when exceeding 4,000 transactions should be ad-
dressed and solved.

9.2.2 Wireless Bridge

With the design architecture in place, the Bluetooth communication channel between the mobile
application and the server could be changed for another technology such as WiFi, GPRS or IrDA.
With more time, the software could be extended to “roll-back” between technologies. For exam-
ple, if a mobile device was not in range of a Bluetooth server, it could automatically roll-back to
use another technology to connect to the same server.

42

9.2. Extensions 43

9.2.3 Logging

An optional extension would be to include logging functionality into the server application. Al-
though not strictly required as it simply links to a database (which would log transactions), the
addition of logging would aid in solving potential bugs should they arise.

9.2.4 Message Exchange Protocol Optimisation

Although the MEP provides anti-deadlocking functionality and a reliable way of sending mes-
sages, it could be extended to included error correction information. For example, if a message
is partially-corrupted during transmission, the MEP could be extended to request only the cor-
rupted part of the message is resent. This would improve bandwidth usage and overall system
performance. Also, support for sending of multiple, simultaneous messages could be added.

9.2.5 Security

Currently the bridge provides no configurable security (beyond that afforded by Bluetooth) for
server administrators. A further extension could implement client verification by lists of permit-
ted or denied clients. Transmission of data could also be secured using the developers choice of
encryption algorithm which could be added as a layer in the system architecture.

9.2.6 Non-Java Implementation

The software design is such that it is possible to be implementable in non-Java environments. A
significant extension would be to implement it for non-Java environment, a further stand-alone
project.

Bibliography

[1] benhui.net: the harmony of mobile development. http://www.benhui.net/.

[2] Bluez: Official Linux Bluetooth protocol stack. http://www.bluez.org/.

[3] Tom Axford. Real-Time Systems Programming. Lecture Notes, 2003.

[4] Behzad Bordbar. Distributed Systems. Lecture Notes, 2004.

[5] Ela Claridge. Software Testing. Lecture Notes, 2005.

[6] Oren Eliezer and Matthew Shoemake. Bluetooth and wi-Fi coexistence schemes strive to
avoid chaos. RF Wireless Connectivity, 2001.

[7] Jon Ellis, Linda Ho, and Maydene Fisher. JDBC 3.0 Specification. Sun Microsystems, 2001.

[8] Martin Fowler. UML Distilled Third Edition: A Brief Guide To The Standard Object Modelling
Language. Addison Wesley, 2004.

[9] Eric Giguere. Compressing XML for Faster Wireless Networking. Sun Microsystem Java De-
veloper Network Articles, 2003.

[10] Eric Giguere. J2ME Tech Tips. Java Developer Connection (JDC) Java 2 Platform, Micro Edition
(J2ME) Tech Tips, 2003.

[11] Eric Giguere. Parsing XML in CLDC-based Profiles. Sun Microsystem Java Developer Network
Articles, 2003.

[12] Allen Holub. Programming Java threads in the real world.
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-threads.html, 1998.

[13] Bruce Hopkins and Ranjith Antony. Bluetooth for Java. Apress, 2003.

[14] Nazmul Idris. Should i use SAX or DOM? developerlife.com, 1999.

[15] Daniel Kappeli. JXTA over Bluetooth. Master’s thesis, Information and Communication
Systems Research Group, Swiss Federal Institute of Technology, Zurich, 2003.

[16] Andr N. Klingsheim. J2ME Bluetooth Programming. Master’s thesis, Department of Infor-
matics, University of Bergen, 2004.

[17] Jonathan Knudsen. Wireless Development Tutorial. Sun Microsystem Java Developer Network
Articles, 2003.

[18] C Bala Kumar, Paul J. Kline, and Timothy J. Thompson. Bluetooth Application Programming
With The Java APIs. Morgan Kaufmann Publishers, 2004.

[19] Laura Lemay and Rogers Cadenhead. Teach Yourself Java 2 in 21 Days Second Edition. SAMS,
2000.

44

Bibliography 45

[20] Qusay Mahmoud. Advanced MIDP Networking, Accessing Using Sockets and RMI from
MIDP-enabled Devices. Sun Microsystem Java Developer Network Articles, 2002.

[21] Qusay H. Mahmoud. J2ME Low-Level Network Programming with MIDP 2.0. Sun Microsys-
tem Java Developer Network Articles, 2003.

[22] Qusay H. Mahmoud. Wireless Application Programming with J2ME and Bluetooth. Sun
Microsystem Java Developer Network Articles, 2003.

[23] Sun Microsystems. Java 2 Platform Standard Edition 5.0 API Specification.
http://java.sun.com/j2se/1.5.0/docs/api/index.html.

[24] Sun Microsystems. Java rmi overview. http://java.sun.com/products/jdk/rmi/.

[25] Sun Microsystems. JDBC Overview. http://java.sun.com/products/jdbc/overview.html.

[26] Sun Microsystems. Working with XML. http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/TOC.html.

[27] Brent A. Miller and Chatschik Bisdikian. Bluetooth Revealed: The Insider’s Guide To An Open
Specification For Global Wireless Communications Second Edition. Prentice Hall, 2002.

[28] Malcolm Orr. Bluetooth for Peer-to-Peer Communicator. Master’s thesis, School of Com-
puter Science, University of Birmingham, 2004.

[29] C. Enrique Ortiz. J2ME Technology Turns 5! Sun Microsystem Java Developer Network Articles,
2004.

[30] Bluetooth SIG. The Official Bluetooth Member Site. https://www.bluetooth.org/.

[31] Ian Sommerville. Software Engineering 6th Edition. Addison Wesley, 2001.

[32] Sun Microsystems. Connected Limited Device Configuration (CLDC) v1.0 Specification, 2003.

Appendix A

Project Proposal

A.1 Introduction

Today, the desire for a unified system of communication devices such as mobile phone’s and
PDA’s is becoming increasing apparent. Bluetooth (IEEE 802.15x) addresses a large sector of this
market by providing a low-cost, short-range wireless communication for low-power devices by
creating the so-called ”Personal Network”.
Although the first specification was released only in July 1999, millions of devices ranging from
mobile phone’s to home appliances such as microwaves and refrigerators are Bluetooth enabled.

Imagine walking into a large, unfamiliar supermarket. You need only a few specific items but
as you have never visited this store, you don’t know where they are. You type into your Blue-
tooth PDA or phone a shopping list. Your device then gives you the location of each of the items.
The simple example facilitates the use of a wireless database and presenting the data using a cus-
tom UI.

This project is to develop a Bluetooth bridge allowing devices to connect to any standard database
and perform operations.

A.2 Project Overview

The bridge aims to:

• Failitate a range of SQL queries and update the database accordingly

• Create as small a footprint as possible on the mobile device, shifting the processing load to
the more capable desktop machine

• Act as a platform for third-party applications

• Create simple programming interfaces to the core of the system

There are two main layers to the system; translation and communication, both having chal-
lenges associated with them.

The communication part of the system deals with how the Bluetooth device transfers date with
the machine running the database. The device will attempt to connect its side of the bridge to the
machines side to allow communication. This layer will perform operations such as authentication
and socket creation.

46

A.2. Project Overview 47

The translation above layer will accept inputs in the form of database operations from third-party
applications. It will then translate these into some form and pass the translated data to the con-
nection layer to be send to the database machine. Similarly, on the machine side the translation
layer provides an interface to the database connection bridge. Any statements will be executed
and results sent back to the device. The device will then present the data the third-party applica-
tion.

Target environments for this project are varied. Devices run a variety of operating systems and
must connect to many different databases. The project will use JDBC and micro-Java. Micro-Java
contains a platform independent Bluetooth API allowing the bridge to run on any device. Simi-
larly JDBC is platform independent and can provide a database interface regardless of operating
environment.

Appendix B

Source Code Listing

/uk/co/dblue/server
/uk/co/dblue/server/comms
/uk/co/dblue/server/comms/CommsControl.java
/uk/co/dblue/server/comms/bluetooth
/uk/co/dblue/server/comms/bluetooth/Connection.java
/uk/co/dblue/server/comms/bluetooth/Control.java
/uk/co/dblue/server/comms/bluetooth/Ping.java
/uk/co/dblue/server/comms/bluetooth/ConnectionChecker.java
/uk/co/dblue/server/sql
/uk/co/dblue/server/sql/Connection.java
/uk/co/dblue/server/sql/ResultSet.java
/uk/co/dblue/server/sql/Statement.java
/uk/co/dblue/server/sql/Method.java
/uk/co/dblue/server/sql/ObjectManager.java
/uk/co/dblue/server/sql/DatabaseObject.java
/uk/co/dblue/server/sql/def
/uk/co/dblue/server/sql/def/Results.java
/uk/co/dblue/server/sql/def/Database.java
/uk/co/dblue/server/sql/def/Query.java
/uk/co/dblue/server/rmi
/uk/co/dblue/server/rmi/commands.dtd
/uk/co/dblue/server/rmi/Dispatcher.java
/uk/co/dblue/server/rmi/Control.java
/uk/co/dblue/server/rmi/Checker.java
/uk/co/dblue/server/rmi/Receiver.java
/uk/co/dblue/server/rmi/Interpreter.java
/uk/co/dblue/server/rmi/Handshaker.java
/uk/co/dblue/server/rmi/RMIStack.java
/uk/co/dblue/server/rmi/Transaction.java
/uk/co/dblue/server/rmi/Wrapper.java
/uk/co/dblue/mobile
/uk/co/dblue/mobile/comms
/uk/co/dblue/mobile/comms/bluetooth
/uk/co/dblue/mobile/comms/bluetooth/Connection.java
/uk/co/dblue/mobile/comms/bluetooth/Control.java
/uk/co/dblue/mobile/sql
/uk/co/dblue/mobile/sql/Connection.java

48

Appendix B. Source Code Listing 49

/uk/co/dblue/mobile/sql/ResultSet.java
/uk/co/dblue/mobile/sql/Statement.java
/uk/co/dblue/mobile/sql/SQLException.java
/uk/co/dblue/mobile/sql/DatabaseObject.java
/uk/co/dblue/mobile/sql/Builder.java
/uk/co/dblue/mobile/sql/InternalErrorException.java
/uk/co/dblue/mobile/rmi
/uk/co/dblue/mobile/rmi/Dispatcher.java
/uk/co/dblue/mobile/rmi/Control.java
/uk/co/dblue/mobile/rmi/Checker.java
/uk/co/dblue/mobile/rmi/Receiver.java
/uk/co/dblue/mobile/rmi/Interpreter.java
/uk/co/dblue/mobile/rmi/Handshaker.java
/uk/co/dblue/mobile/rmi/RMIStack.java
/uk/co/dblue/mobile/rmi/Transaction.java
/uk/co/dblue/mobile/rmi/Wrapper.java
/uk/co/dblue/mobile/util
/uk/co/dblue/mobile/util/Queue.java
/uk/co/dblue/mobile/util/Observable.java
/uk/co/dblue/mobile/util/Regex.java
/uk/co/dblue/mobile/util/Observer.java
/uk/co/dblue/mobile/util/Serialize.java
/uk/co/dblue/shared
/uk/co/dblue/shared/messaging
/uk/co/dblue/shared/messaging/format
/uk/co/dblue/shared/messaging/format/FormatTag.java
/uk/co/dblue/shared/messaging/format/BodyTag.java
/uk/co/dblue/shared/messaging/format/SignatureTag.java
/uk/co/dblue/shared/messaging/tags
/uk/co/dblue/shared/messaging/tags/ReturnTag.java
/uk/co/dblue/shared/messaging/tags/NACKTag.java
/uk/co/dblue/shared/messaging/tags/Tag.java
/uk/co/dblue/shared/messaging/tags/DeleteTag.java
/uk/co/dblue/shared/messaging/tags/ACKTag.java
/uk/co/dblue/shared/messaging/tags/MethodTag.java
/uk/co/dblue/shared/messaging/tags/ParameterTag.java
/uk/co/dblue/shared/messaging/tags/CreateTag.java
/uk/co/dblue/shared/util
/uk/co/dblue/shared/util/Queue.java
/uk/co/dblue/shared/util/Regex.java
/uk/co/dblue/shared/util/Serialize.java
/uk/co/dblue/shared/exceptions
/uk/co/dblue/shared/exceptions/InvalidTransactionSyntaxException.java
/uk/co/dblue/shared/exceptions/TransactionNeverReceivedException.java
/uk/co/dblue/shared/exceptions/SQLException.java
/uk/co/dblue/shared/exceptions/InternalErrorException.java
/uk/co/dblue/shared/exceptions/NullTransactionCommandException.java
/uk/co/dblue/shared/exceptions/NullTransactionAttributeException.java

Appendix C

Guide For Running The Software

Note: all instructions are for Linux only.

C.1 Client Software

C.1.1 Pre-requisites

A mobile device with Java 2 Micro Edition Runtime with JSR-82 support. Without JSR-82, the
software will not operate.

C.1.2 Starting the software

A demo application has been developed using the API. It connects to a PostgreSQL database
running on the server machine with the userID postgres and no password. It then executes a
number of simple database operations. If required, this simple application can be altered easily
using the included the document programming API found on the distribution CD.

1. Copy all source code from the distribution CD or from http://www.dblue.co.uk/ maintaining
the directory structure

2. Change into the DBlue-mobile/dist directory

3. Install DBlue-mobile.jar onto the mobile device

4. Start the server daemon (see C.2

5. Start the DBlue-mobile software

C.2 Server Daemon

C.2.1 Pre-requisites

Execution requires Java 2 Standard Edition Runtime v1.5.0 or later. The software will not work
with previous versions of Java.
In addition, the Linux Bluetooth driver (BlueZ) and userland software is required. The avetana
JSR-82 driver should also be added to the systems $CLASSPATH variable.

50

C.2. Server Daemon 51

C.2.2 Starting the daemon

1. Copy all source code from the distribution CD or from http://www.dblue.co.uk/ maintaining
the directory structure

2. Start the BlueZ userland software

3. Change into the DBlue-server/build/classes directory

4. To allow the daemon to connect to a database, edit run.sh changing org.postgresql.Driver for
the appropriate JDBC driver(s).

5. Add the database driver to the $CLASSPATH variable

6. Check that the database will accept connections from the server machine

7. Execute run.sh with the following command

homer ˜$./run.sh

